后端应用级开发者该如何拥抱 AI GC?就是在这样的一个大的浪潮下,我们的传统的应用级开发者。我们该如何选择职业或者是如何去快速转型,跟上这样的一个行业的一个浪潮?
越往上它的整个难度就是职业机会也好,或者说是整个的这个运作也好,它的难度会越大,然后越往下机会就会越多,所以这是一个金字塔型模型。
类似OpenAI的ChatGPT,羊驼,百川智能等,自己拿大量语料去做预训练。
OpenAI一次全量训练几千万美金,只有巨头和大资本玩得起,职业机会少。
在基座模型基础上灌入一些行业垂直数据,基本上可理解为它是在基座模型的基础上做微调。二次三次训练也好,得到这样的一个结果,它的职业机会稍微多点,但我认为可能对于应用级开发者机会不是那么多。
不管是ToB还是ToC,这块儿是大量机会,给到我们这些传统做互联网、科技公司、应用开发公司包括科技创业公司,就有我们应用开发者大量的机会存在。
向上,要了解模型;向下,要对行业要有了解,有场景sense。所以它是一个比较重要的位置,也是未来一个爆发的一个赛道。
看右边,ChatGPT CEO创始人Sam Altman说大模型是AI的iPhone时刻,就是在打造这样一个生态圈,像苹果,我有自己的App Store和开发者工具。然后你只需要借助AI把你的创意变成相应的应用。所以说在这个时候其实是有大量的职业机会或大量应用开发的机会存在,也是说我们传统的应用开发者去快速转型跟上这个赛道的一个绝佳机会。
因为前面可能在搞基座大模型,打地基;或在去微调训练,做一些行业模型,那这上面这些我们都无法参与或参与度低。
但是在这个强应用场景,现在其实还没有出现一些非常强的应用,这时有点像当年这个苹果刚发布的时候App Store刚刚发布的时候那个状态,跑马圈地,大量机会存在。
再往下其实也不是我们的机会,或者也不是应用级开发者应该关注的。因为再往下就是AI的使用可能变成非常普通的一个要求,各种行业都要学会使用去实现你自己或你行业的降本增效。所以它是一个所有企业使用的过程,对我们来说,这个就有点简单,所以它是一个仅仅是一个使用层面,但是这里面也有大量的机会:教别人会使用或开发一些应用,让它能够更好地去使用等。
所以这个模型大概就把我们的一个机会点和难度点说清楚,模型层面竞争日趋激烈的。
但应用市场现在看到还没出现杀手级应用,最大杀手级应用就是ChatGPT,其他的一些杀手级应用还没出现,为啥?因为现在上面两层不够完全成熟,或者说是大家的认知还没跟上,下面的这些各行业的应用,也没有完全用起来,很多人只是拿它聊天解决很基本问题,缺少了一些强应用,去把很多场景给做出来。
当然了,也是因为我们很多应用级开发者,目前对 AI 不是很了解,他可能有很多应用场景,但是对 AI 能做什么,怎么做,不太清楚。所以这块市场非常广阔,可以说,所有应用都值得用 AI 重做。
这个是从一个大的行业趋势,可以看到说应用级开发者,该如何去拥抱我们这个大模型。
底层可能是我们的 GPU 算力,不用去关注,很多的云平台其实已经解决了我们的这个算力问题,包括我们后面案例里面实操的时候,要用到的类似一些像算力云或一些国内一些云平台,他们其实现在都把这个问题给我们解决了。
再往上就是大模型开发。AI GC 赛道里面我们讲的两大部分就是模型的开发部分,那这个部分跟我们应用级开发可能这个关系也不是很大,或者说大家的职业机会不是很多,那反倒是这个所谓的原生应用这一块儿呢,是非常应该关注的一个赛道。包含对大模型的了解,在大模型之上是我们的应用组件,那么应用组件上面是我们的应用框架。应用组件里面就包含了我们的 AI 的能力,我们 AI 的能力,还有我们的云能力,那 AI 能力可能就包括我们的多模态,大模型插件,云能力像什么向量数据库、COS 存储,这些云能力你可理解为是给 AI 开挂的。再往上应用框架有两个大方向:
检索增强生成RAG,最多的应用就是文档问答,拿 PDF 传,然后就可以去和他对话,然后包括提炼一些他这个主要内容等等
agent 智能体,那这里面的话有很多的应用场景就是你可以把它想象成一个机器人的开发,但是这个机器人可能会更专业,而且它可以调度外部的一些软件。
从这个图,我们就可以找到自己的位置,应用级开发可能关注的能力范围右边这一大块儿,但实际 coding 的部。